You are cordially invited to join us at Hong Kong Jewellery & Gem Fair 2023
Please call +852-2-545-7118 or send us an email atΒ [email protected]Β to schedule an appointment or to request a copy of our latest custom design catalog.
M.I.D. Specializes in: All shapes and sizes from 0.30ct to extreme sized diamonds of 10.00+ct; Parcels, single stones, matched pairs, and layouts Certified stock fromΒ GIA, EGL, AGS, HRD, and IGI Extremely Rare Fancy Colored Specialty Stones Premium cuts to value cuts in all shapes Fancy colored diamonds available in one-of-a-kind jewelry.
The Hong Kong Jewellery & Gem Fair is considered is amongst Asiaβs top 3 fine jewellery events and is a must attend trading event. In June 2019 31stΒ Hong Kong Jewellery & Gem Fair will take place at the Hong Kong convention and exhibition center and host 2,300 exhibitors from over 40 countries around the world.
MID House of Diamonds will be present and exhibiting at the September 2023 Hong Kong Jewellery & Gem Fair. Join Us! Booth: 7p14
MID House of Diamonds will be among the exhibitors at the June 2020 JCK Vegas Show. Come say Hi!
Lorem ipsum dolor sit amet conse ctetur adipisicing elit.
Ipsum dolor sit amet conse ctetur adipisicing elit, sed do eiusmod tempor incididunt.
Dolor sit amet conse ctetur adipisicing elit, sed do eiusmod tempor.
580 5th Ave #3003, New York, NY 10036
+1-212-391-1121
+1-877-391-1121
Blog
Home Β» Blog – The Diamond Blog Β» SCIENTISTS TAKE A LOOK AT THE DIAMOND, PRODUCING GEMS FROM FOSSEL FUELS AND BENDING OTHERS
Focus on
Β
A study recently made public by Stanford University and the SLAC National Accelerator Laboratory shows how diamonds can be made from a type of hydrogen and carbon molecule found in crude oil and natural gas.
βWhatβs exciting about this paper is it shows a way of cheating the thermodynamics of whatβs typically required for diamond formation,β stated Rodney Ewing, a geologist from Stanford, who co-authored on the paper, which was published February 21, 2020, in Science Advances.
βWe wanted to see just a clean system, in which a single substance transforms into pure diamond β without a catalyst,β said the studyβs lead author, Sulgiye Park, a postdoctoral research fellow at Stanfordβs School of Earth, Energy & Environmental Sciences Diamondoid Models.
With the long-used High Pressure-Hight Temperature method of synthesizing diamonds, a catalyst has been required. Often a metal, it has tended tends to diminish the quality of the final product.
NEW METHOD OF SYNTHESIZING DIAMONDS DISCOVERED
To create the man-made diamonds, the research team experimented with three types of powder refined from tankers full of petroleum. According to the research paper, they resembled rock salt, but through a powerful microscope it is possible distinguish atoms arranged in the same spatial pattern as the atoms that make up diamond crystal, divided up into smaller units composed of one, two or three cages. Unlike diamond, which is pure carbon, the powders also contain hydrogen.Β
The researchers then placed the samples into a pressure chamber, which presses the material between two polished diamonds. By hand-turning a screw, they were able to simulate the types of pressure typical at the depth beneath the surface ofΒ the Earth where natural diamonds are located.
The samples with then subject to high temperatures using a with a laser. What they discovered was that the three-cage samples, called triamantane, reorganize itself into diamond with surprisingly little energy, with the hydrogen component falling away.
In the meantime, the extremely small sample size that could be to the anvil cell makes this approach impractical for synthesizing much more than extremely small stones, the scientists believe that the have made progress in a new method for synthesizing large number of diamonds.
Scientists at the Massachusetts Institute of Technology (MIT discovered a method of manipulating diamond crystals. When in nano-needle form, they could bend and stretch it by as much as 9 percent.Β
BENDING NANO-DIAMOND NEEDLES
In another research project, this one conducted at the Massachusetts Institute of Technology (MIT), scientists discovered a method of manipulating diamond crystals. What they showed was that when the diamond was in nano-needle form, they could bend and stretch it by as much as 9 percent. In bulk form flexibility was only 1 percent.
The scientists say that flexible diamond nano-needles could have a variety of applications, from delivering drugs into cancer cells to improving the design of data storage devices.
“It was very surprising to see the amount of elastic deformation the nanoscale diamond could sustain,” Ming Dao, an MIT scientist.
To manage the experiment, the scientists used a chemical vapor deposition (CVD) process, which is able to produce material coatings on a very small scale. The diamond needles were a little over two micrometers in size.
The deformation of 9 percent completely reversed itself once the pressure was removed, on condition that the needle was made of a single diamond crystal.